Graph Modeling for Quadratic Assignment Problems Associated with the Hypercube

نویسندگان

  • Hans Mittelmann
  • Jiming Peng
  • Xiaolin Wu
چکیده

In the paper we consider the quadratic assignment problem arising from channel coding in communications where one coefficient matrix is the adjacency matrix of a hypercube in a finite dimensional space. By using the geometric structure of the hypercube, we first show that there exist at least n different optimal solutions to the underlying QAPs. Moreover, the inherent symmetries in the associated hypercube allow us to obtain partial information regarding the optimal solutions and thus shrink the search space and improve all the existing QAP solvers for the underlying QAPs. Secondly, we use graph modeling technique to derive a new integer linear program (ILP) models for the underlying QAPs. The new ILP model has n(n−1) binary variables and O(n3 log(n)) linear constraints. This yields the smallest known number of binary variables for the ILP reformulation of QAPs. Various relaxations of the new ILP model are obtained based on the graphical characterization of the hypercube, and the lower bounds provided by the LP relaxations of the new model are analyzed and compared with what provided by several classical LP relaxations of QAPs in the literature.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graph Modeling for Quadratic Assignment Problem Associated with the Hypercube

In the paper we consider the quadratic assignment problem arising from channel coding in communications where one coefficient matrix is the adjacency matrix of a hypercube in a finite dimensional space. By using the geometric structure of the hypercube, we first show that there exist at least n different optimal solutions to the underlying QAPs. Moreover, the inherent symmetries in the associat...

متن کامل

Estimating Bounds for Quadratic Assignment Problems Associated with Hamming and Manhattan Distance Matrices Based on Semidefinite Programming

Quadratic assignment problems (QAPs) with a Hamming distance matrix of a hypercube or a Manhattan distance matrix of rectangular grids arise frequently from communications and facility locations and are known to be among the hardest discrete optimization problems. In this paper we consider the issue of how to obtain lower bounds for those two classes of QAPs based on semidefinite programming (S...

متن کامل

Effective heuristics and meta-heuristics for the quadratic assignment problem with tuned parameters and analytical comparisons

Quadratic assignment problem (QAP) is a well-known problem in the facility location and layout. It belongs to the NP-complete class. There are many heuristic and meta-heuristic methods, which are presented for QAP in the literature. In this paper, we applied 2-opt, greedy 2-opt, 3-opt, greedy 3-opt, and VNZ as heuristic methods and tabu search (TS), simulated annealing, and pa...

متن کامل

A Honey Bee Algorithm To Solve Quadratic Assignment Problem

Assigning facilities to locations is one of the important problems, which significantly is influence in transportation cost reduction. In this study, we solve quadratic assignment problem (QAP), using a meta-heuristic algorithm with deterministic tasks and equality in facilities and location number. It should be noted that any facility must be assign to only one location. In this paper, first o...

متن کامل

An Interior Point Approximation Algorithm for a Class of Combinatorial Optimization Problems: Implementation and Enhancements

Non-convex quadratic minimization on a special projection of a hypercube models a large class of combinatorial optimization problems. It makes it possible to arrive at small neighbourhood of a binary local minimizer using a quadratic programming method and then employ a rounding heuristic to actually get such a minimizer. In this paper we describe an implementation of an approximation algorithm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007